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1.2 Scalars, Vectors, and Matrices

Exercise (Euclidean Distance as Difference)

Problem. Show that ||x̄− ȳ||2 is the squared euclidean distance between x̄ and ȳ.

Solution.
||x̄− ȳ||2 = (x̄− ȳ) · (x̄− ȳ)

z = [(x1 − y1), (x2 − y2)...(xd − yd)]

z · z =
d∑

i=1

(xi − yi)
2

This is the definition of euclidean distance squared.

Problem. Solution.

Problem 1.2.1 (Triangle Inequality)

Problem. Show that ||x̄− ȳ|| ≤ ||x̄||+ ||ȳ|| using cauchy’s inequality.

Solution. Recall that cauchy’s inequality says that: |x̄ · ȳ| ≤ ||x̄||||ȳ||.
Notice that since both sides of the equation are non-negative, it holds if and only if after

squaring both sides.

(||x̄+ (−ȳ)||)2 = (x̄+ (−ȳ)) · (x̄+ (−ȳ))

= x̄ · x̄+ 2x̄ · (−ȳ) + ȳ · ȳ

= ||x̄||2 − 2x̄ · (−ȳ) + ||ȳ||2 ≤ ||x̄||2 + 2||x̄||||ȳ||+ ||ȳ||2 = (||x||+ ||y||)2

Notice big step is applying Cauchy in the middle term of the last line and noticing it can be
factored.

Problem 1.2.2 (Outer Product Properties)

Problem. Show that the outer product of a n × 1 vector and a 1 × d vector is a n × d vector
such that every row is a multiple of every other row and every column is a multiple of every other
column.

Solution. The dimensions of the result follow from the definition of matrix multiplication.
The ith row of the resulting matrix looks like [xiy1, xiy2...xnyd], thus every row is a multiple

of ȳ and they are all multiples of each other. Symmetrical reasoning holds for the columns.
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Problem 1.2.3

Problem. Show that the product of matrices ABC can be expressed as a weighted sum of outer
products of matrices vectors taken from A, C where the weights are taken from B.

Solution. Let A ∈ Rn×d, B ∈ Rd×s, C ∈ Rs×k. Additionally let ⊗ be the outer product operator.
For any matrix Z let Zi,∗ denote the ith row of Z and similar for the jth column but other ways
around.

By previous lemma stated in the book and associativity we have that:

ABC = A(BC) = A

s∑
r=1

B∗,r ⊗ Cr,∗

Next we can distribute A over the summation and apply the same lemma to the product of
A and B∗,r ⊗ Cr,∗ which is a d× k matrix.

=
s∑

r=1

A(B∗,r ⊗ Cr,∗) =
s∑

r=1

d∑
t=1

A∗,t(B∗,r ⊗ Cr,∗)t,∗

For a given step of the summation, notice that the entry (i, j) of the matrix resultant from
the product inside the summation is given by Ai,tBt,rCr,j. The term from B is the same for
every entry, thus it is equivalent to multiplication by a scalar, which commutes. After pulling
the scalar notice that Ai,tCr,j is equivalent to the respective entry of A∗,t ⊗ Cr,∗. Thus, we may
rewrite as:

s∑
r=1

d∑
t=1

Bt,r(A∗,t ⊗ Cr,∗)

Problem 1.2.5

Problem. Let D ∈ Rn×d be a matrix whose columns sum to zero. Let A ∈ Rd×d be any matrix.
Show that the product of DA also has columns summing to zero.

Solution. We can examine the ith column of DA with the same column/row selection notation
as above. 

D1,∗ · A∗,i
D2,∗ · A∗,i

.

.
Dn,∗ · A∗,i


Thus the sum of the ith column can be written as:

n∑
j=1

Dj,∗ · A∗,i

The inner product distributes and thus we can rewrite as:
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(
n∑

j=1

Dj,∗) · A∗,i

Notice that by definition the ith component of (
∑n

j=1Dj,∗) is the sum of the ith column of D
and thus (

∑n
j=1Dj,∗) is just a row vector of zeros implying (

∑n
j=1Dj,∗) · A∗,i is just the scalar

zero.

Problem 1.2.8 (Inverse of Triangular Matrix is Triangular)

Let R be a d×d upper triangular matrix and ēk be a d dimensional vector with 1 in the kth entry
and 0 elsewhere. Discuss why solving x̄ is simple in the equation Rx̄ = ēk.

For any equation Rx̄ = b, and upper triangular matrix R it is the case that Rd,dx̄d = b̄d
which we can solve. With this information we can solve for xd−1 similarly in an equation with
one unknown and repeat the process for all components of x̄.

Discuss why Rx̄ = ēk must satisfy xi = 0 for i > k.
Since R is triangular, the entries on the diagonal must be non-zero. If k ̸= d, then xd must

be zero. We can apply the same reasoning as above to conclude that all the entries of x̄ from d
to k + 1 must be zero.

Discuss why the solution to x̄ is equal to the kth column of the inverse of r.
It is easy to see for any matrix B, Bēk is the kth column of B. So Rx̄ = ēk → x̄ = R−1ēk.

Discuss why the inverse of R is upper triangular.
We can expand our reasoning from above and replace x with a d× d matrix and ēk with the

identity matrix. Notice that finding the kth column of the new matrix equates to solving the
original equation with ēk. It follows from the previous sections that the all components of the
kth column that come after the kth component are zero, yielding the desired upper triangular
structure.

Problem 1.2.11 (Inverting Triangular Matrices)

coming soon

Problem 1.2.12

Problem. Suppose that I and K are two d× d matrices. Show that:

(I + P )−1 = I − (I + P )−1P

Solution.
I − (I + P )−1P = (I + P )−1[(I + P )− P ]

= (I + P )−1[I] = (I + P )−1
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Problem 1.2.13 (Push Through Identity)

Problem. Show: UT (In + V UT )−1 = (Id + UT )−1UT

Solution.
UT (In + V UT )−1 = (Id + UTV )−1UT →

(Id + UTV )UT = UT (In + V UT ) →

UT + UTV UT = UT + UTV UT

Problem. Show: DT (λIn +DDT )−1 = (λId +DTD)−1DT

Solution.
DT (λIn +DDT )−1 = (λId +DTD)−1DT →

(λId +DTD)DT = DT (λIn +DDT ) →

λDT +DTDDT = λDT +DTDDT

Problem 1.2.14

Problem. Show that the Frobenius norm of the outer product of two vectors is equal to the
product of their Euclidean norms.

Solution. Let s, t be n−dimensional vectors. Recall that entry (i, j) of s⊗ t is sitj.

∥s⊗ t∥F =

√√√√ n∑
i=1

n∑
j=1

(sitj)2

=

√√√√ n∑
i=1

s2i (
n∑

j=1

t2j) = ||t||

√√√√ n∑
i=1

s2i = ∥t∥∥s∥
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Problem 1.2.15 (Small Matrices Have Large Inverses)

Problem. Show that the F-norm of the inverse of an n× n matrix with F-norm of ϵ is at least√
n
ϵ

Solution. Let A be an n× n matrix that is non-singular. Notice that ∥In∥F =
√
n. One way to

see this is through the identity ∥D∥2F = trace(DDT ) for any matrix D and that the identity is
symmetric. Now consider:

AA−1 = In =⇒ ∥AA−1∥F = ∥In∥F =
√
n

By sub-multiplicity of the F norm we have that

√
n = ∥AA−1∥F ≤ ∥A∥F∥A−1∥F = ϵ∥A−1∥F

=⇒
√
n

ϵ
≤ ∥A−1∥F

Problem 1.5.1

Problem. Show using Taylor expansions that eiθ = cos θ + i sin θ

Solution. Consider the Taylor expansion of eiθ about θ = 0 which is given by:

inf∑
j=0

ijθj

j!

Notice that the even terms of this series are equal to the cosine expansion and the odd terms
are equal to the sin expansion.

Exercise 2.5 (Sine law)

This is work in progress

Problem. Express the sine of the interior angle between two vectors a, b only in terms of dot
products.

Solution. One way to see the sine is the ratio between the length of b and the length of the line
drawn from b to some point on a that is orthogonal to a. We can compute the vector for this
line by taking the difference of b and b projection onto a. Note that the projection of b onto a is
given by ( a·b

a·a)a. Thus,

sin θ =
∥b− ( a·b

a·a)a∥
∥b∥
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Exercise 26 (Trigonometry with vector algebra)

Coming soon

Exercise 27 (Coordinate geometry with matrix algebra)

Coming soon

Exercise 29 (Solid geometry with vector algebra)

Coming soon

Exercise 31 (Matrix centering)

Coming soon

Exercise 49 (Inverses behave like matrix polynomials)

Coming soon

Exercise 32 (Energy preservation in orthogonal transformations)

Problem. If A is an n×d matrix and P and an orthonormal d×d matrix, then ∥A∥F = ∥AP∥F .

Solution. Multiplication by orthonormal matrices preserve the magnitude of an input vector. An
arbitrary row of the result AP is equal to the corresponding row of A pre-multiplied with the
orthonormal P . Thus, the rows of AP have the same magnitude as their corresponding row in
A, i.e. ∥A∥2F = ∥AP∥2F

Exercise 33 (Tight sub-multiplicative case)

Problem. Suppose that u, v are column vectors with dimensions n, d respectively. Show that the
F-norm of their outer product is equal to ∥u∥∥v∥.

Solution. Notice that entry (i, j) of u⊗ v is uivj.

∥u⊗ v∥F =

√√√√ n∑
i=1

d∑
j=1

u2
i v

2
j

=

√√√√ n∑
i=1

u2
i

d∑
j=1

v2j = ∥v∥

√√√√ n∑
i=1

u2
i = ∥v∥∥u∥
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Exercise 24 (Frobenius orthogonality and Pythagorean theorem)

Problem. Two n × d A,B are said to be Frobenius orthogonal if the sum of the entry-wise
product of their corresponding elements is zero. Show that ∥A+B∥2F = ∥A∥2F + ∥B∥2F
Solution.

∥A+B∥2F = tr((A+B)(A+B)T ) = tr((A+B)(AT +BT ))

= tr(AAT + ATB + ABT +BBT ) = tr(AAT ) + tr(ATB) + tr(ABT ) + tr(BBT )

= tr(AAT ) + tr(BBT ) = ∥A∥2F + ∥B∥2F
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