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Introduction



What is a configuration?

k-configuration, specifically an (nk) configuration is a set of n
points and n lines such that every line is incident with k points
(and vice-versa).



Configurations



Basic configuration theory

Geometric Configuration: an image of points and lines in the
(extended) Euclidean plane.

Topological Configuration: similar to a geometric configuration,
except that the ”lines” are pseudo-lines.

Combinatorial (set) Configuration: an abstract representation
listing the incidences of points for each line.



Properties and Relationships

Two configurations are isomorphic if they admit labels such that
there exists a 1-to-1 mapping from points to points (and lines to
lines) that preserves incidences. Such a map is called an
automorphism.

Remark: There can be infinitely many geometric (or topological)
realizations of a set configuration and we say that a set
configuration underlies a given geometric (or topological)
configuration.



Examples of Configurations

Figure 1: The (93)1 configuration and its underlying set



Examples of Isomorphisms

Figure 2: Three isomorphic realizations of the (93)1 configuration



State of the Field

Our understanding of geometric configurations is largely limited to
various constructions. Not many general results exist in proving
the existence of geometric configurations for arbitrary n or k.



Enumerations of 3-configurations

Table 1: Number of non-isomorphic configurations
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Group Structure of Configurations



Motivation

If a given set configuration exhibits some automorphic structure,
when do geometric realizations exist that exhibit that same
structure as symmetries?



Geometric Symmetries

For a given geometric configuration, we call transformations that
map points to points (and lines to lines) that preserves incidences
a symmetry. The set of all these symmetries form a group which
acts on the set of labels of a configuration.

Geometric configurations can exhibit dihedral or cyclic symmetries
(or both)



Geometric Symmetry Example Cyclic

Figure 3: Symmetry group c4



Geometric Symmetry Example Dihedral

Figure 4: Configurations with dihedral symmetries



Automorphism groups

If we concern ourselves instead with set-configurations, we refer to
a point to point transformation that preserve incidences as an
automorphism. The set of all automorphisms form a group...



Automorphism group as a subgroup

Theorem
For a configuration C with n lines and k points, its automorphism
group (Aut(C )) is a subgroup if Sn × Sk .

As customary, we want to show that Aut(C ) ∈ Sn × Sk , contains
inverses and identities.



Subgroup Proof (1)

We can represent any automorphism as a permutation of lines σn
paired with a permutation of points σk . And so, we have
containment.



Subgroup Proof (2)

Given an automorphism (σn, σk), we want to show that (σn, σk)−1

is also an automorphism (i.e. it preserves incidences). We notice
that permutations are cyclic.
Let on be the order of σn and ok be the order of σk . Then,

(σonokn , σonokk ) = e =⇒ (σonok−1n , σonok−1k ) = ((σonokn )−1, (σonokk )−1)

= (σonokn , σonokk )−1

Since (σonok−1n , σonok−1k ) is just the composition of onok − 1
automorphic transformations, it must also be an automorphism.
Thus (σn, σk)−1 ∈ Aut(C )



Subgroup Proof (3)

The identity automorphism preserves incidences by definition and
so we indeed have a subgroup.



Classification of automorphism groups

Given a set-configuration, determining its automorphism group is
non-trivial. We rely on some tools in graph theory to help us out.



The Levi Graph

The Levi graph is a bipartite graph whose with a black vertex for
each point in a configuration and a white vertex for each line in
the configuration. An edge exists between a black and white
vertices if and only if a given the respective point is incident to the
respective line in the configuration.

Every set configuration admits a unique Levi graph and thus, by
understanding the graph automorphisms of a Levi graph, we can
understand the automorphisms of the configuration it represents.



Levi Graph Example 1

Figure 5: The Pappus configuration (93)1. On the left is the geometric
configuration, and on the right is its corresponding Levi graph.



Levi Graph Example 2

Figure 6: The geometric configuration (123)



Levi Graph Example 2

Figure 7: The Levi graph of a (123) configuration



Using Levi Graphs

Every set-configuration admits a unique Levi graph.

A color and incidence preserving automorphism of the Levi graph is
then an automorphism of the set-configuration it represents.



Conjectures and Positive Examples

To investigate our posed question we narrow our gaze to cyclic
subgroups. We examine an example when a cyclic automorphism
subgroup implies a geometric ones. We proceed to offer some
general conjectures.



The Pappus Automorphisms

The permutation of vertices (123)(456)(789) is an automorphism
of the Levi graph. Furthermore this permutation has order three
and thus generates a subgroup isomorphic to Z/3Z. We might
suspect that there exist another realization of the Pappus
configuration with 3-fold symmetry.



The Pappus Automorphisms

And one does indeed exist. Note this is isomorphic to the previous.



Orbits

We can color code orbits of points in the laterals that connect
them.



Symmetries and Automorphisms: Conjectures

Let C be a set-configuration of k lines and points.
Conjecture: If the automorphism group of C contains a cyclic
subgroup of order t with t < k then t | k and there exists a
geometric realization of C with t-fold rotational symmetry.

The Pappus configuration we have discussed is a positive example.



Symmetries and Automorphisms: Conjectures (2)

Let C be a set-configuration of k lines and points.
Conjecture: Let p prime with p < k . If p | #Aut(C ) than there
exist a geometric realization of C with p-fold rotational symmetry
and p | k.



Symmetries and Automorphisms: Conjectures (2) contd.

By Sylow 1, if p | #Aut(C ) then there must exist a cyclic subgroup
of order p. Then the Levi graph of C must also have a cyclic
subgroup of order p. If we assume the above conjecture, we are
done.



Conclusion

By definition, the study of automorphism groups of configurations
is equivalent to the study of automorphisms of bipartite graphs.
General results on the existence of their geometric realizations
seem quite intractable given our (humanities) current
understanding. As highlighted earlier, we only know of the
existence of a select few by construction.



Generalized Cyclic Configurations
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What is a Generalized Cyclic Configuration?

Definition
A Generalized Cyclic Configuration is one that is underlied by the
table shown below. This table is denoted as J(n, a, b).

1 2 3 4 . . . n-3 n-2 n-1 n

1+a 2+a 3+a 4+a . . . n-3 + a n-2 + a n-1+a n+a

1+b 2+b 3+b 4+b . . . n-3 + b n-2 + b n-1+b n+b
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Existence Statements

Theorem (1)

Combinatorial configurations (n3) exist if and only if n ≥ 7

Theorem (2)

Topological configurations (n3) exist if and only if n ≥ 9

Theorem (3)

Geometric configurations (n3) exist if and only if n ≥ 9
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Existence Statements
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Classical Approach

Usually, Theorems 1 and 3 are proved using J(n, 1, 3).

The question then arises:

For what other values a, b can the table J(n, a, b) be used to
prove these theorems?
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Combinatorial Configurations using J(n, a, b)

Theorem (1)

For a fixed n and the generalized cyclic table C = J(n, a, b), a < b,
if b 6∈ {n − a, n+a

2 , n2 + a, n2 , 2a} and a 6= n
2 , then C is a

combinatorial configuration.



Combinatorial Configurations using J(n, a, b)

Outline of proof:

Since a < b, C is not a combinatorial configuration when
there are at least two columns
A = {j , j + a, j + b},B = {k, k + a, k + b}, 1 ≤ j , k ≤ n, such
that |A ∩ B|≥ 2.

|A ∩ B|≥ 2 when one of the following is true1:

1) j = k + a and (j + a = k or j + a = k + b)

2) j + a = k + b and (j + b = k + a or j + b = k)

3) j + b = k and (j = k + b or j = k + a)

The above can be simplified to get
b ∈ {n − a, n+a

2 , n2 + a, n2 , 2a} or a = n
2

1with everything mod n
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Combinatorial Configurations using J(n, a, b)

Figure 8: Values of a, b such that the table J(n, a, b) is not a valid
configuration for 8 ≤ n < 50



Geometric Configurations using J(n, a, b)

Definition
If a combinatorial configuration contains a Hamiltonian
multilateral, then there exists a sequence
P0, L0,P1, . . .Pn−1, Ln−1,Pn such that each Li is incident with Pi

and Pi+1. Moreover, this sequence contains all points and lines
once, and only once.

Notation:
A generalized cyclic table that contains a Hamiltonian multilateral
using rows q and r will be said to contain an Hq,r path.

Figure 9: J(10, 1, 3) contains both an H1,2 (shown) and a H1,3 path (not
shown).



Geometric Configurations using J(n, a, b)

Notice that the existence of an Hq,r path for J(n, a, b) can be
easily shown, and can be explicitly defined2:

H1,2 exists if gcd(n, a) = 1. If it does,
H1,2 = {j + ia|1 ≤ i < n}

H1,3 exists if gcd(n, b) = 1. If it does,
H1,3 = {j + ib|1 ≤ i < n}

H2,3 exists if gcd(n, b − a) = 1. If it does,
H2,3 = {j + a + i(b − a)|1 ≤ i < n}

2with everything mod n
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Geometric Configurations using J(n, a, b)

Theorem (2)

For n ≥ 9, a generalized cyclic configuration C = J(n, a, b), a < b
can be geometrically realized following an algorithm described by
Grünbaum if one of the following is true:
1) C contains an H1,2 path and b = 3a or
2) C contains an H2,3 path and b = 3

2a



Geometric Configurations using J(n, a, b)

Grünbaum’s algorithm:
Any J(n, 1, 3) combinatorial configuration, n ≥ 9, can be
geometrically realized by placing the elements 2 to n− 3 of R1 and
R2 (which form a Hamiltonian multilateral) in a ”zig-zag” pattern.

1 2 3 4 . . . n-3 n-2 n-1 n

2 3 4 5 . . . n-2 n-1 n 1

4 5 6 7 . . . n 1 2 3

Figure 10: J(n, 1, 3) configuration table and geometric realization



Geometric Configurations using J(n, a, b)

Outline of proof of Theorem 2:
As the proof is nearly identical for both cases, assume that R1 and
R2 form the Hamiltonian multilateral. In addition, let 2 be the
starting point.

Making the zig-zag pattern with the path
{2, 2 + a, 2 + 2a, 2 + 3a}, we see that 2 + 3a must be the same
point as 2 + b, indicating that b = 3a



Geometric Configurations using J(n, a, b)

(a) J(11, 2, 3) (b) J(11, 2, 6) (c) J(11, 4, 6)

Figure 11: Examples of valid geometric configurations



Open Question

For the (valid) values of a, b such that J(n, a, b) cannot be
geometrically realized using the previous construction, is there
another way to realize these combinatorial configurations, or are
they unrealizable?
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What is an irreducible configuration?

Definition
A combinatorial configuration is reducible if there is a point C ,
collinear with points A,B, with points A′,A′′, and with points
B ′,B ′′ such that, if C is removed, then the six remaining points
can be rearranged to form {A,A′,A′′} and {B,B ′,B ′′}

Figure 12: Visualization of what it means to be reducible.



What is an irreducible configuration?

Definition
A combinatorial configuration that cannot be reduced in this
manner is called irreducible.

Example

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1

4 5 6 7 8 1 2 3

Figure 13: J(8, 1, 3) is an irreducible configuration

Removing point 3, we see that, for example, no matter which new
point we choose for the line {8, 1}, there will never be a new
configuration.
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When is a configuration irreducible?

Theorem (Boben)

A connected configuration C is irreducible if and only if either:

C = J(n, 1, 3)

C is the Pappus configuration (93)1

n = 10m,m ≥ 1, and C = M(m),M∗(m), or M∗∗(m).
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M(m)

M(m),M∗(m),M∗∗(m) are configurations made up of ”modules”,
each consisting of 10 points, which can be drawn in the following
way:



M(m)

In each case, for 1 ≤ j < n, A′′′j is the same point as Aj+1, B ′′′j is
the same point as Bj+1, and C ′′′j is the same point as Cj+1.

When j = n:
M(m) maps A′′′n to A1, B ′′′n to B1, and C ′′′n to C1.
M∗(m) maps A′′′n to C1, B ′′′n to B1, and C ′′′n to A1.
M∗∗(m) maps A′′′n to C1, B ′′′n to A1, and C ′′′n to B1



Example: J(n, 1, 4)

From the Irreducibility Theorem, it appears that C = J(n, 1, 4),
n ≥ 9, is reducible given a = 1 and b = 4



Example: J(n, 1, 4)

We have seen that C is only reducible for n ≥ 12

1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11 12 1

5 6 7 8 9 10 11 12 1 2 3 4

Figure 14: J(12, 1, 4) is an reducible configuration



Example: J(n, 1, 4)

For when n = 9, using the prior definitions, we can show that C is
irreducible. This may be due to the cyclic configuration being
isomorphic to the Pappus configuration.
However, this configuration is not isomorphic to the Pappus
configuration, which gives an immediate contradiction to the
irreducibility theorem.

Figure 15: J(9, 1, 4) is irreducible



Example: J(n, 1, 4)

For when n = 10, C is irreducible. However, we note that this
configuration is not isomorphic to the M(m), M∗(m), and M∗∗(m)
configurations, which gives an immediate contradiction to the
irreducibility theorem.

Figure 16: The three Martinetti configurations are irreducible



Example: J(n, 1, 4)

For when n = 11, C is irreducible. We note that this is still an area
that needs further investigation.

Figure 17: Levi graph for the J(11, 1, 4) configuration



Example: J(n, 1, 4)

Future work:

Can a point be added to M(1), M∗(1), or M∗∗(1), that gives
rise to the configuration J(11, 1, 4) such that J(11, 1, 4) is
shown to be reducible?

How does the Levi graph differ between an irreducible
((n − 1)3) configuration and a reducible (n3) configuration?
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Miscellaneous

Recall Theorem 1:
For a fixed n and the generalized cyclic table C = J(n, a, b), a < b,
if b 6∈ {n − a, n+a

2 , n2 + a, n2 , 2a} and a 6= n
2 , then C is a

combinatorial configuration.

Put differently, for a fixed n, if (a, b) is a point on the line
n = 2b − 2a, n = 2a, n = 2b, n = a + b, n = 2b − a, or 2a = b,
then C ′ = J(n, a, b) is not a configuration.



Miscellaneous

Theorem
If C ′ = J(n, a, b), b > a is not a combinatorial configuration, and
6|n, then the centroid of the triangle bounded by the lines
n = 2b − 2a, n = 2a, n = 2b are the values a, b such that C ′

contains two columns A,B, A 6= B3, where |A ∩ B|= 3.

3Equality here is defined as follows: if A[i ] is the i-th element of line A, then
A = B ⇐⇒ ∀n,A[n] = B[n]



Miscellaneous

Values a, b for which J(n, a, b) is not a combinatorial configuration:

(a) J(40, a, b) (b) J(43, a, b)

(a) J(30, a, b)



Miscellaneous

Outline of Proof:

Show that the centroid of the triangle is at (n3 ,
2n
3 ).

Use the below lemma.

Lemma
Let A,B both be columns of J(n, a, b), a < b, such that A 6= B.
Then, ∀A, ∃B s.t. |A ∩ B|= 3 ⇐⇒ 3|n and a = n

3 , b = 2n
3 .
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Miscellaneous
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