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Abstract : In this paper, we start by introducing the basics
of configurations of lines and space. We move into discussing
symmetry groups of these configurations. Specifically, we ex-
plore how we might classify the symmetries of (93) and (103)
geometric configurations, given the graph automorphisms of
their underlying set-configurations. Finally, we show how a
specific class of combinatorial configurations called general-
ized cyclic configurations can be explored using this termi-
nology, and give several interesting geometric results.
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1. Introduction

Configurations are a collection of points and lines where each point is incident
with the same number of lines (and vice versa). A fundamental question in the
study of configurations is geometric realizability. That is to say, given an abstract
incidence structure (referred to as a set-configuration), do we know when we are
able to draw (realize) a set of points and lines with the same incidence structure?
Specifically, do we know when a structure of a set-configuration is exhibited in
its geometric realizations? The answer to this question lies in understanding the
symmetric structures of set-configurations. As one might expect, the set of all
symmetries for a given configuration form a group which acts on the set of points
(and lines) of a configuration. Towards the beginning of this paper, we attempt
to classify subgroups of some historically significant set-configurations and observe
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when geometric realizations with visually apparent symmetries of the same nature
exist. Later on, in the second topic, we explore a specific type of set-configuration
whose structure is cyclic in nature. As it turns out, whether these configurations
are geometrically realizable is depended on several parameters, even something as
straightforward as the number of incidences per line. In addition, we provide some
commentary on how these realizations were done in the past, as well as provide our
own novel observations and results.
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ence. We also thank the Northeastern Department of Mathematics and the North-
eastern College of Science for additional support.

2. Basic Definitions and Concepts1

While there are many different definitions of “configuration”, a configuration of
points and lines can be defined as follows:

Definition 2.0.1. A configuration (pq, nk) is a family of points and lines such
that, for p, q, n, k ∈ N:

• Each of the p points is incident with precisely q of the n lines.
• Each of these n lines is incident with precisely k of the p points.

For the remainder of this paper, we limit ourselves to (n3) configurations, i.e.
configurations that have n lines incident with 3 points, and n points incident with 3
lines. Additionally, it is important to note that, depending on context, the usage of
“points” and “lines” in Definition 2.0.1 is not necessarily accurate, which leads to
the following set of definitions.

Definitions 2.0.2. Configurations can be classified as one of three types:

• A Geometric Configuration is an image of points and lines in the (ex-
tended) Euclidean plane.
• A Topological Configuration is an image of points and pseudo-lines in

the (extended) Euclidean plane.
• A Combinatorial Configuration is an abstract representation listing the

incidences of “points” for each “line”. In this case, points can be referred to
as marks, and lines referred to as blocks.

As one might expect, geometric configurations are also topological configurations,
and topological configurations are also combinatorial configuration. If a geometric
or topological configuration is formed from a combinatorial configuration, we say
that it is underlied by, and a realization of, the combinatorial configuration.

1Unless otherwise noted, definitions and theorems in this section are from [Bra09]
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1 1 1 2 2 2 3 3 3
4 5 6 4 5 6 4 5 6
7 8 9 8 9 7 9 7 8

Figure 2.0.1. On the left, a (93) combinatorial configuration. On
the right, its geometric realization.

Definition 2.0.3. C ′ and C ′′ are considered isomorphic (sometimes also called
combinatorially equivalent, or of the same combinatorial type) if the points
and lines admit labels such that a one-to-one correspondence τ of points to points
(and lines to lines) preserves incidences.

Figure 2.0.2. 3 isomorphic configurations.
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3. Symmetries of Configurations

10 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
3 4 5 6 7 8 9 10 1 2

Figure 3.0.1. A (103) configuration with two isomorphic realizations.

We begin with an example of a (103) configuration with two of its isomorphic
realizations and their underlying set-configuration as shown in Figure 3.0.1. Notice
that these realizations are symmetric, the first having 5-fold rotations symmetry, and
the other having reflectional symmetry. One might wonder if the set-configuration
exhibits properties that give rise to realizations with symmetries. This is exactly
the motivation of the following section; we wish to be able to classify the symmetric
structure of the set-configuration and determine when realizations exist with the
same symmetries. From here on, we reserve the word symmetry solely for geometric
configurations, and refer to “symmetries” of a set-configuration as automorphisms.

3.1. Symmetries and Automorphisms.

First, we introduce some necessary definitions and theorems.

Definition 3.1.1. A symmetry of geometric configurations in the Euclidean plane
is an isometry of the plane that map the configuration onto itself [Bra09].

Theorem 3.1.2 ([Bra09]). The set of all symmetries of a geometric configuration
form a group. If G is an arbitrary geometric configuration we denote its symmetric
group as Sym(G) .

Definition 3.1.3. An automorphism is a 1-to-1 incidence preserving transforma-
tion from points to points (and lines to lines) of a set-configuration.

Theorem 3.1.4. The set of all automorphisms of a given set-configuration form
a group subgroup of Sn × Sn. If C is an arbitrary set-configuration we denote its
automorphism group as Aut(C).

Proof. Let H be the set of all automorphisms of an (nk)-configuration. Any element
in H must be a permutation of the n lines paired within a permutation of n points
and thus is contained within Sn × Sn.
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Consider the arbitrary automorphism (σl, σp) ∈ H where each σ is an incidence
preserving permutation of the lines or points. We know permutations are cyclic, so
let ol, op be the order of σl, σp, respectively. We have,

(σl, σp)
olop = e =⇒ (σl, σp)

olop−1 = (σl, σp)
−1

Since (σl, σp)
−1 is just the composition of olop− 1 many incident preserving map-

ping, it must also preserve incidences. Thus (σl, σp)
−1 ∈ H. The identity transfor-

mation preserves incidences and thus H is a subgroup of Sn × Sn. �

An immediate consequence of Theorem 3.1.4 is the following:

Corollary 3.1.5. For any geometric realization G of a set-configuration C, Sym(G) ≤
Aut(C). �

Now that we understand the distinction in symmetric structures of set and geo-
metric configurations, we can phrase the main question of this section as follows.

Question 3.1.6. What is the relationship between the automorphism group of a
configuration and the symmetries of its possible realizations? Furthermore, ff the
automorphism group of configurations acts transitively, do there necessarily exist
geometric realizations with non-trivial symmetry? [Bra09]

It is known that any symmetry group of a geometric configuration is either cyclic
or dihedral in nature [Bra09]. In this section we explore in particular automorphisms
with cyclic subgroups and realizations thereof with rotational symmetry. We use
the terminology “having t-fold rotational symmetry” interchangeably with “having
symmetry group Zt/Z” as they are equivalent.

To begin to investigate this question we necessarily need to be able to identify the
automorphism group of a given set configuration. This turns out to be non-trivial
so we enlist some tools from graph theory to assist.

3.2. The Levi Graph.

Definition 3.2.1. The Levi graph of a (nk)set-configuration is a bipartite graph of
n black and white vertices, corresponding to the points and lines of the configuration,
respectively. An edge exists between different colored vertices if and only if the
corresponding points and lines are incident to each other.

Theorem 3.2.2. [Bra09] Every set-configuration admits a unique Levi graph. Ad-
ditionally, there is a 1-to-1 relationship between automorphism of a set-configuration
and graph automorphism of its Levi graph.

The Levi graph proves to be an effective tool as its group of graph automorphisms
is isomorphic to the automorphism group of the set configuration it represents. Quite
a lot is known about graph automorphism and there even exists computational
methods for determining an graph automorphism group from an arbitrary graph. A
bit of trickiness arises however when we notice that Levi graphs are bipartite and
we only concern ourselves with graph automorphism that map same color to same
color.
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Figure 3.2.1. A (123) configuration and its Levi Graph.
[Bra09]

4. Examples of Automorphisms and Symmetries

Recall that our interest is in the relationship between the automorphism group of
a set-configuration and the symmetries of its possible realizations. In this section
we choose several examples of set-configurations with known geometric realizations
and determine their automorphism group.

4.1. The (93)2 Configuration.

We begin with the Levi graph and set-configuration for the second of three non-
isomorphic (93) configurations.

1 1 1 2 2 2 3 3 4
3 4 5 4 5 6 5 6 7
7 6 8 8 7 9 9 8 9

Figure 4.1.1. The (93)2 set-configuration and its Levi graph (lines
unlabeled).

Using Figure 4.1.2, we demonstrate how we can detect a few subgroups of Aut((93)2)
by inspection.
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Theorem 4.1.1. Z/9Z ≤ Aut((93)2)).

Proof. The permutation that maps point i to points i+2(mod9) is an automorphism.
Furthermore this automorphism is cyclic and thus generates a subgroup of group
Aut((93)2)) isomorphic to Z/9Z. �

In this case, Z/9Z acts transitively on the set of edges. We might suspect that
there exists a geometric realization of (93)2 with some form of rotational symmetry.
One such realization is shown in Figure 4.1.2

Figure 4.1.2. A realization of the (93)2 configuration.

Before moving on, we note that, as it turns out, any (n3) configuration C with
Z/nZ ≤ Aut(C) is a special case of configurations called cyclic configurations which
we discuss in the latter half of this paper. Additionally, it can be shown that, when
n is even, the geometric realizability of such configurations as symmetric in the
euclidean plane is well studied.

4.2. Pappus.

One of the earliest discovered geometrically realizable 3-configurations is the Pap-
pus configuration (commonly denoted as (93)1). Here, we investigate the structure
of its automorphism group and its implications on certain geometric realizations.

Figure 4.2.1. The Pappus configuration (93)1. On the left is the
geometric configuration, and on the right is its corresponding Levi
graph.[Pis13]
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Theorem 4.2.1. (Z/3Z)2 ≤ Aut((93)1).

Proof. It is easy to see that the permutation of vertices (123)(456)(789) is an au-
tomorphism of the Levi graph. Additionally the permutation (148)(258)(369) is an
automorphism, and commutes with the first. These two permutations generate a
subgroup of Aut((93)1) of order 9 isomorphic to (Z/3Z)2 [Pis13]. For any given point
in the configuration, that point is not fixed by any of these permutations other than
the identity. This implies every element has a trivial stabilizer. Since |(Z/3Z)2| is
equal to the number of vertices we can apply the Orbit-Stabilizer theorem and see
that this subgroup acts transitively on the points of the configuration.

�

One might expect the existence of a geometric realization of the Pappus configu-
ration with 3-fold rotational symmetry. This is observed in Figure 4.2.2.

Figure 4.2.2. A realization of the Pappus Configuration with 3-fold
rotational symmetry.

4.3. Desargues.

Another early configuration is the Desargues configurations also known as (103)1
and we endeavor to explore its automorphic structure in the same way. In Figure
4.3.2 we see its Levi graph.
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Figure 4.3.1. The Levi graph for the (103)1 configuration [Pis13].

Theorem 4.3.1. Z/5Z ≤ Aut((103)1)

Proof. We can see that the permutation (12345)(67890) is an automorphism and
generates a cyclic subgroup of order 5 isomorphic to Z/5Z. �

This action has two orbits and is not transitive. Unlike our previous examples,
there is no known rotationally symmetric realization of (103)1 in the standard Eu-
clidean plane. In Figure 4.3.2 we see a geometric realization (with no apparent
symmetry).

Figure 4.3.2. Geometric Realization of the Desargues configuration.

4.4. The (103)10 Configuration.

In Figure 3.0.1 we displayed the set-configurations of (103)10 and two of its geomet-
ric realizations with 5-fold and 2-fold rotational symmetry, respectively. In Figure
4.4.1, we give its Levi graph.

Theorem 4.4.1. Z/10Z ≤ Aut((103)10)

Proof. The permutation that maps vertex i to vertex i + 1 (mod 10) is an auto-
morphism when. This permutation generates a subgroup of order 10 isomorphic to
Z/10Z that acts transitively on the points (and lines) of the configuration. �

We know that this group is abelian and thus by the Fundamental Theorem of
Finite Abelian Groups it must be isomorphic to Z/5Z×Z/2Z. This serves as another
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positive example where a subgroup of an automorphism group is manifested in the
symmetries of its realizations.

Figure 4.4.1. Levi graph of the (103)10 configuration.
[Bra09]

5. Generalized Cyclic Configurations

5.1. Proofs of Existences.

While a complete enummeration of the various categories of configurations for n
small can be given, it is perhaps more foundational and constructive to highlight
the ways to show that these configurations exist. The theorems below do so, and
were known as early as 1882.

Theorem 5.1.1. Combinatorial configurations (n3) exist if and only if n ≥ 7.

Theorem 5.1.2. Topological configurations (n3) exist if and only if n ≥ 9.

Theorem 5.1.3. Geometric configurations (n3) exist if and only if n ≥ 9.

Over the years, the theorems above have been proven in several different manners.
Here, we summarize the proofs given by Grunbaum for Theorems 5.1.1 and 5.1.3,
as these will be useful for the remainder of this paper [Bra09]. To do so, we first
introduce a necessary definition.

Definition 5.1.4. A generalized cyclic configuration is one that is illustrated
using Table 5.1.1. This table is denoted as C (n, a, b), 1 ≤ a < b < n

1 2 3 4 . . . n− 3 n− 2 n− 1 n
1 + a 2 + a 3 + a 4 + a . . . n− 3 + a n− 2 + a n− 1 + a n+ a
1 + b 2 + b 3 + b 4 + b . . . n− 3 + b n− 2 + b n− 1 + b n+ b

Table 5.1.1
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For n ≥ 7, C (n, 1, 3) is a valid combinatorial configuration, as no two columns
share the two or more of the same points, and each of the n lines are incident with
3 points (and vice-versa). This completes the proof of Theorem 5.1.1.

To show Theorem 5.1.3, we again consider C = C (n, 1, 3).

We note that C contains a path 2, 3, 4, ..., n− 2, where each point is incident with
the point immediately to the left and the right of it. Moreover, for 1 ≤ i < n − 5,
the points at index i, i+1, and i+3 are those points which are collinear. With these
in mind, the points of this path can be placed as follows:

(1) Place point 2 at the origin, and point 4 somewhere to the left of point 2.
(2) Draw a line through 2 with small positive slope, and place point 3 on this

line, such that it is close to 2, and the line 3, 4 has small negative slope. Also
place on this line point 5, such that the line 4, 5 has positive slope.

(3) On line 3, 4, place point 6 such that its x-coordinate is larger than the x-
coordinate of point 5.

(4) On line 4, 5, place point 7 such that its x-coordinate is larger than the x-
coordinate of point 6.

(5) Proceed in a similar fashion until point n−2 is placed on the line n−4, n−5,
such that its x-coordinate is larger than the x-coordinate of point n− 3.

While the complete proof can be found in the aforementioned reference, for our
purposes, it is enough to note that remaining three points n−1, n, and 1 can always
be placed to fulfil the necessary remaining incidences, which completes the proof of
Theorem 5.1.3.
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Example 5.1.5. Below is the configuration C (12, 1, 3), generated using the algo-
rithm above.

Figure 5.1.1

5.2. Generalizations of Section 5.1.

For this section, our motivating question is this:

Question 5.2.1. For which values of a and b can the generalized cyclic table C (n, a, b)
be used to prove Theorems 5.1.1 and 5.1.3?

The values of a, b for which the combinatorial configuration C (n, a, b) exists have
been known since the late 1800s (see [Bru98]). However, we provide our own version
of the proof below:
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Theorem 5.2.2. For a fixed n and the generalized cyclic table C = C (n, a, b), a < b,
if b 6∈ {n− a, n+a

2 , n2 + a, n2 , 2a} and a 6= n
2 , then C is a combinatorial configuration.

Proof. Let A,B be two rows of C, such that A 6= B. Let A = {j, j + a, j + b} and
B = {k, k+ a, k+ b}. By definition, in order for C to be a combinatorial configura-
tion, |A ∩ B| must be one or less. Therefore, we consider the case when C is not a
combinatorial configuration (i.e. we consider the case when |A ∩B|≥ 2).

Without loss of generality, as |A ∩ B|≥ 2, there are three distinct cases we need
to consider, which are outlined below.

• If j ≡ k+a (mod n), then either j+a ≡ k (mod n) or j+a ≡ k+b (mod n).
Rearranging, we get j − k ≡ a (mod n) and (j − k ≡ −a (mod n) or
j − k ≡ b − a (mod n)). Simplifying slightly, we get a ≡ −a (mod n) or
a ≡ b− a (mod n). Finally, this gives us a = n

2 or b = 2a.

• If j+a ≡ k+b (mod n), then either j+b ≡ k+a (mod n) or j+b ≡ k (mod n).
Rearranging, we get j − k ≡ b − a (mod n) and (j − k ≡ a − b (mod n) or
j − k ≡ −b (mod n)). Simplifying slightly, we get b− a ≡ a− b (mod n) or
b− a ≡ −b (mod n). Finally, this gives us b = n

2 or b = a+n
2 .

• If j + b ≡ k (mod n), then either j ≡ k + b (mod n) or j ≡ k + a (mod n).
Rearranging, we get j − k ≡ −b (mod n) and (j − k ≡ b (mod n) or j − k ≡
a (mod n). Simplifying slightly, we get −b ≡ b (mod n) or −b ≡ a (mod n).
Finally, this gives us b = n

2 or b = n− a.

And so, when |A∩B|≥ 2, b must be an element of {n−a, n+a
2 , n2 +a, n2 , 2a} or a = n

2 .

Therefore, when b 6∈ {n− a, n+a
2 , n2 + a, n2 , 2a} and a 6= n

2 , |A ∩B|< 2, indicating
the table represents a combinatorial configuration, as claimed. �

Example 5.2.3. We can confirm these results graphically in Figure 5.2.1, by gen-
erating all invalid generalized cyclic tables, 8 < n < 50. For a fixed n, the
points plotted are the integer values a and b, a < b, which satisfy the equations
n = 2b − 2a, n = 2a, n = 2b, n = a + b, n = 2b − a, or 2a = b. These results are
discussed more in-depth in Section 6.1.
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Figure 5.2.1

Regarding the results of Theorem 5.2.2, there is a necessary caveat to be made.
While any value a, b that satisfies the criteria will generated a valid combinatorial
configuration, this does not mean that any two pairs will immediately yield two non-
isomorphic combinatorial configurations. Indeed, isomorphism classes of generalized
cyclic configurations can be approached as follows:

Theorem 5.2.4 ([DeO20]). Any two generalized cyclic configurations, C1 and C2,
are isomorphic if and only if all values of C2 are the same constant multiple of C1

(mod n).

We explore the usefulness of such a theorem in the example below.

Example 5.2.5. It can be shown that, up-to-isomorphism, there exists only three
(93) combinatorial configurations (see, for instance, [Bra09]) These three configura-
tion tables are shown below.

1 1 1 2 2 2 3 3 3
4 5 6 4 5 6 4 5 6
7 8 9 8 9 7 9 7 8

Table 5.2.1. The configuration (93)1.

1 1 1 2 2 2 3 3 4
3 4 5 4 5 6 5 6 7
7 6 8 8 7 9 9 8 9

Table 5.2.2. The configuration (93)2.

1 1 1 2 2 2 3 3 3
4 5 8 4 5 7 4 6 7
7 6 9 6 8 9 5 9 8

Table 5.2.3. The configuration (93)3.
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It can be easily shown that, by Theorem 5.2.4, C (9, 1, 3), C (9, 2, 6), C (9, 3, 4),
C (9, 5, 6), C (9, 3, 7), and C (9, 6, 8) are isomorphic to each other. Furthermore, by
observation, we see that C (9, 2, 6) is isomorphic to the configuration (93)2.

2 4 6 8 1 3 5 7 9
4 6 8 1 3 5 7 9 2
8 1 3 5 7 9 2 4 6

Table 5.2.4. The configuration C (9, 2, 6), which is isomorphic to
both C (9, 1, 3) and (93)2.

Indeed, all valid C (9, a, b) configurations can be shown to be isomorphic to one
of these three configurations.

Theorem 5.2.4 is a powerful tool that can be used to generate isomorphic cyclic
configurations. However, for our purposes, the following corollary is far more useful:

Corollary 5.2.6. Given two generalized cyclic configurations, C1 = C (n, a1, b1) and
C2 = C (n, a2, b2), if there exists 1 < z < n such that b2 ≡ zb1 (mod n) and a2 ≡ za1
(mod n), then C1 and C2 are isomorphic.

Proof. By Theorem 5.2.4, if C1 and C2 are isomorphic, then for a column A = {j, j+
a1, j + b1} ⊂ C1, there exists column B ⊂ C2 such that B = {zj, zj + za1, zj + zb1,
for 1 < z < n.
Notice that a2 ≡ zj + za1 − zj = za1 (mod n) and b2 ≡ zj + zb1 − zj = zb1 (mod
n), as claimed.

Given the convention that a < b, it may be necessary to swap the rows 2 and
3. However, doing so will still yield an isomorphic configuration, and so we are
done. �

Now, we turn our attention to the values of a, b such that the generalized cyclic
configuration can be geometrically realized. Specifically, we focus on the values of
a, b such that this geometric realization can be done using the same proof by con-
struction as that presented for Theorem 5.1.3. However, this, as it turns out, is
not difficult to show, at least partially. Indeed, for a fixed n, any such pair that
generates an isomorphic configuration to C (n, 1, 3) will be geometrically realizable
in this manner.

For values a, b that do not satisfy this criteria, it does not necessarily mean that
this algorithm will not work, although we suspect it does not. However, it has been
shown that there are other ways to geometrically realize these types of configurations.
But first, some necessary definitions.

Definition 5.2.7. A configuration C is called astral if the number of orbits of
points is equal to the number of orbits of lines

Definition 5.2.8. A configuration C is called chiral if C is astral, and is with only
a cyclic group of symmetries.

We conclude this section by highlighting a result by Berman et al:
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Theorem 5.2.9 ([DeO20]). For n = 2m,m ∈ N, C (n, a, b) can be geometrically
realized as a chiral astral configuration (with a few exceptions) if a is even, a < m,
b is odd, and 0 < b < a or m < b < a+m.

6. Further Exploration of Generalized Cyclic Configurations

In this section, we explore some results found as a result of the work done in the
above sections, but that are not necessary useful in those endeavours.

6.1. Centroids and Generalized Cyclic Combinatorial Configurations.

Example 6.1.1. In the figures below, we plot the values of (a, b) such that, for a
fixed n, C (n, a, b) is not a valid combinatorial configuration.

C (40, a, b). C (43, a, b).

C (30, a, b).

From the examples above, it appears that the centroid of the triangle bounded
by three lines is exactly the intersection of the remaining three lines. Moreover,
while not shown, the centroid (a′, b′) yields the only configuration (for that specific
n) such that the same three points appear on two distinct lines. Put differently, the
configuration C (n, a′, b′) is the only such configuration for this n that contains two
columns A and B whose intersection is size three.

We attempt to explain this observation in the remainder of this section.
But first, we present a definition used several times throughout this explanation.

Definition 6.1.2. Let A and B be columns of a configuration C = C , and let A[i]
represent the i-th element of the line A. We say that A and B are equal (or A = B)
if, for all 1 ≤j ≤ 3, A[j] = B[j].
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Now, consider this restatement of Theorem 5.2.2: For a fixed n, if (a, b) is a point
on the line n = 2b − 2a, n = 2a, n = 2b, n = a + b, n = 2b − a, or 2a = b, then
C ′ = C (n, a, b) is not a configuration.

Using this as a starting point, we proceed with the following theorem:

Theorem 6.1.3. For n even, if C ′ = C (n, a, b), b > a is not a combinatorial
configuration, then the specific (a′, b′) pair that yields |A∩B|= 3, for A,B ⊂ C ′, A 6=
B is the centroid of the triangle bounded by the lines n = 2b− 2a, n = 2a, n = 2b.
Moreover, this point satisfies the equations n = a+ b, n = 2b− a, 2a = b.

Proof. By Lemma 6.1.4, |A ∩B|= 3 implies that a′ = n
3 and b′ = 2n

3 .
For a fixed n, the lines n = 2b− 2a, n = 2a, n = 2b form a right triangle. It follows
that the coordinates of the three vertices of this triangle are (0, n2 ), (n2 ,

n
2 ) and (n2 , n).

We can then calculate the centroid to be (n3 ,
2n
3 ). The coordinates are exactly the

values of a′ and b′. Additionally, it is obvious that the point (a′, b′) is exactly the
intersection of the lines n = a+ b, n = 2b− a, 2a = b. �

Lemma 6.1.4. Let A,B both be columns of C (n, a, b), b > a, such that A 6= B.
Then, for all A, there exists B such that |A ∩ B|= 3 if and only if 3|n and a = n

3

and b = 2n
3

Proof. We begin by proving the forward implication. Let A = [1, 1 + a, 1 + b].
Choose a B = [k, k+a, k+b], for some 1 < k ≤ n, such that |A∩B|= 3. As 1 < k and

a < b, the intersection of A and B is size 3 only if [1
n≡ k+a∧1+a

n≡ k+b∧1+b
n≡ k].

Simplifying, we obtain [a = n − b ∧ a = b − a]. Since a, b, n ∈ N, it immediately
follows that 3|n , and a = n

3 , b = 2n
3 , as claimed.

To prove the reverse implication, suppose that 3|n and a = n
3 , b = 2n

3 . Let C ∈
C (n, a, b), i.e. C = [q, q+a, q+b] = [q, q+ n

3 , q+ 2n
3 ]. Construct another line D which

contains all points of C shifted by n
3 i.e. D = [q + n

3 , q + 2n
3 , q + n]. Recognizing all

operations are mod n, and letting r = q + n
3 , we obtain D = [r, r + a, r + b], which

is an element of C (n, a, b). Since C 6= D, but |C ∩D|= 3, we are done. �

Corollary 6.1.5. It follows from Theorem 6.1.3 (and the subsequent lemma) that,
for a specific n = 2m, m ∈ N, every point (a, b) (excluding the centroid) gives rise
to a generalized cyclic table C ′ = C (n, a, b) such that, for A,B ⊂ C ′, |A∩B|= 2. �

Before moving on, we summarize the results of this section. For a fixed n:

• From Lemma 6.1.4, if 3|n, the intersection (a′, b′) of the lines n = a+ b, n =
2b− a, 2a = b determines the values a = a′ and b = b′ which cause C (n, a, b)
to have at least two columns with size three intersection.
• From Theorem 6.1.3, if 6|n, the centroid (a′, b′) of the triangle bounded by

the lines n = 2b − 2a, n = 2a, n = 2b determines the values a = a′ and
b = b′ which causes C (n, a, b) to have at least two columns with size three
intersection.

6.2. Generation of Geometric Configurations.

Unsurprisingly, due to the nicheness of this topic, there, from what we could
tell, does not exist any specific software tools that would useful when generating
geometric configurations. And so, we attempted to make one. Using Python and
relying heavily on the pygame package, we designed an animation tool2 that would

2Found here: https://github.com/nipayne/Configurations
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allow for the geometric generation of any cyclic configuration C (n, 1, 3), n ≥ 9. This
script was designed to serve two primary purposes:

• First, this was intended to be an education tool. Grumbaum’s algorithm
is sometimes difficult to parse, and it very difficult to implement when n is
large.
• Second, this was intended to lay the foundations and allow for construction

techniques using other algorithms.

As an added bonus, the way this tool was designed, configurations can be drawn
by hand. While this can be done in pre-existing software packages such as GeoGebra,
we found that these were not as intuitive.

(a) The start of a free-drawn configuration. (b) The geometric realization of C (9, 1, 3).

Figure 6.2.1

However, due to time constraints, there are many improvements and expansions
that could be made. We outline a few below.

• For each n, the current way of generating the last three points, n−1, n and 1,
is by randomly selecting positions on each of the appropriate lines, until each
of the collinearity conditions are satisfied. As the configuration increases in
size, the probability of selecting these three points decreases exponentially,
which is not ideal. This process needs significant refinement before large
values of n can be geometrically generated.
• As mentioned above, other algorithms could be implemented to generate

other geometric realizations, such as those for h-astral configurations.
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